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Exact solution of an evolutionary model without aging
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We introduce an age-structured asexual population model containing all the relevant features of evolutionary
aging theories. Beneficial as well as deleterious mutations, heredity, and arbitrary fecundity are present and
managed by natural selection. An exact solution without aging is found. We show that fertility is associated
with generalized forms of the Fibonacci sequence, while mutations and natural selection are merged into an
integral equation which is solved by Fourier series. Average survival probabilities and Malthusian growth
exponents are calculated and indicate that the system may exhibit mutational meltdown. The relevance of the
model in the context of fissile reproduction groups like many protozoa and coelenterates is discussed.
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[. INTRODUCTION plains senescence as a result of late-acting deleterious muta-
tions, i.e., that a greater mutation load on the last part of the
For all live organisms death is inexorable. If life is not life is less strongly selected.
abbreviated by disease, predation, or accidents then death is In this paper, we obtain both analytical and numerical
preceded by senescenfk?2]. Senescence seems to be re-solutions for a simple age-structured population model. In
lated to reproductive strategies and it starts after an indithis model, reproduction is asexual and the individuals are
vidual reaches the fertile age. It can be a slow process fosubmitted to helpful or deleterious hereditary mutations. The
species which reproduce many timémroparou$ or an number of offspring is fixed but arbitrary otherwise and the
abrupt process for species reproducing only oncdPopulation dynamics is managed by natural selection. Amaz-
(semelparous—the catastrophic senescence of the Pacifidngly, this system does not exhibit senescence even when
salmon being a good example of the latter. deleterious mutations are predominant. From a mathematical
There are three kinds of aging theories: biochemical, evopoint of VieW, the solution we found factorizes into a fertility

lutionary [3,4], and telomerid5]. The biochemical invokes and a mutational sector. It is shown that the fertility sector is
damage on DNA, cells, tissues, and organs. Defective pracompletely described by generalized forms of Fibonacci se-
teins are synthesized, altering the normal course of metab&iuences. On the other hand, the mutational sector, solved by
lism. The presence of free radicals, i.e., of unpaired highlyFourier series, incorporates the combined effects of mutation
reactive electrons, can cause death of the cells or may evéﬁ]d natural selection. If harmful mutation is intense then a
lead to cancer. As a consequence, such theories are todgjtational meltdowr{9] process can take place. All these
firmly connected to modern gerontology. Biochemical theo-results were corroborated by Monte Carlo simulations. From
ries predict that species with higher metabolism would have biological point of view, our results make the model a good
shorter lifetime. A criticism against this result arises whencandidate to describe groups in which all reproduction oc-
the lifetimes of birds and mammalsf the same size and curs by fission, such as protozoa and a miscellany of co-
under optimal conditions in captivityare compared. Usu- €lenterates, since all of them appear to lack ag8lg
ally, birds live longer. Even closely related organisms like
bats and rodents with comparable sizes have very different
lifetimes. Such differences should be explained by the evo- Il. MODEL
lutionary theories of aging. In the telomere hypothesis of consider a population distributed by+1 agesi (i
senescence, reph_catlon _of normal cell_s is accompanle_d by a01,...1) with respective birth ratem; . We call babies
telomeric shortening. This acts as a mitotic clock resulting inpe individuals at age 0. They do not reproduce, i,

a permanent exit of the cell cycle. , ~=0. Individuals with agei=L die after reproduction. Let
Evolutionary theories of aging are hypothetlco—deductlveNi(J,t) be the number of individuals at agewith survival

in character, not inductive. They fall into two classes: theprobabilityJ betweenJ and J+dJ at timet (of course,J
optimality theory and the mutational theory. In the optimality g 11y, we choose, as initial condition, a uniform distribu-
theory(6,7], fitness is maximized by increasing the survival i of babies. i.e N:(3,0)=N, &, o with N, being a con-

y .G | ] I,

and reproduction rate early in life at the expense of late, I-8gtant. Let us point out that senescence here means that the

it sees senescence as a necessary cost lof processes benefmrage survival probability drops with ageAt time t, each
to youth. On the other hand, the mutational thef8y ex-  jyqividual is submitted to mutation, which changes its sur-

vival probability fromJ to J’ in the following way:

*Electronic address: onody@ifsc.sc.usp.br
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wheree is a random number chosen in the interpala,b] N1(J;,t)

(a>0 andb>0), generated by the uniform probability den- N(J; 1) 0

sity distributionq(e)=[H(e+a)—H(e—b)]/(a+b) [H(x) 2\t

stands for the Heaviside functipnf a>b then deleterious N3(Ji,t) | =Ny F(J3;,t) MEDT 0| (6)
mutations are dominant. The transition probabiRyJ’,J) : :

that an individual has its survival probability changed frdm

to J' is given by the integral P(J',J)=/"25(J’ NL(Je, 1) 0

—Jef)g(e)de. Observing that a helpful mutation is allowed
as long as it does not increase the survival probability bewhere

yond unity, we get
J(a+b)P(J",J)={[HI' —Je ¥)—HJ' —Je")]
X[H(J)—HI—e ®)]+[H' -Je™®
—H' - D][HUO-e ) -HJ-D]}.
)

After mutation, the entire population passes through natu-
ral selection. The survivors then reproduce, generating ba-

bies with inherited characteristics, i.e.,

L
NO(J,t)=Zl m; N;(J,t) for t=1. 3

At time stept+ 1 individuals get older or die. Taking into

account mutations and natural selectiamthis ordey, their
number is given by

1
Ni+1(J',t+1)=f J'PJ,J) Ni(J,t) dJ
0

for i=0,...L—1. (4)

Clearly, N;(J3,t<i)=0 for i#0. Fort=1, Egs.(3) and
(4) can be rewritten in the matricial form

N(J’,t+1)=Mj1f(J',J) N(J,t) dJ, (5)
0

wheref(J",J)=J" P(J',J) andN(J,t) andM are the fol-
lowing vector and matrix:

N4 (J,1)
Ny (J,t)
N(3,t=| Na3.t) |,

N (J,1)
m; mp; mg me—; m
1 0 0 ... 0 0
M=]| O 1 0 0 0
O 0O o0 ... 1 0

Matrix M is a special form of the Leslie matric¢&0].
Iterating Eq.(5) we obtain at timg=1

t
1 1
Fao= [ [ THte9 0 a0 @
0 0j=1
andM? is theL X L identity matrix.

Ill. GENERALIZED FIBONACCI SEQUENCES

Equation(6) shows that the dynamics factorizes into two
sectors: the fertility, exclusively contained in the mathil
and the mutational, including both mutations and natural se-
lection processes and represented by the fundictlearly,
at timet, we need only to know the first column elements of
the (t—1)th power of the fertility matrix. As we shall see,
these elements form a Fibonacci sequence. Let usAgétl
+1—1i) the element of theth line and first column. It is a
simple exercise to verify that it =2 andm;=m,=1 then
A,(t) can be calculated, at any timiethrough the relation
Ay (t)=Ay(t—1)+Ay(t—2), with A,(1)=A,(2)=1, which
is exactly the Fibonacci sequence. The ratio of two succes-
sive numbers, lim, A (t+1)/A (t)=1.618... , gives the
golden section or the divine proportion, as it was called by
Kepler. It is astonishing to find this ubiquitous sequence in
such disparate things as the cluster-cluster aggre@afgs
the division of a line into extreme and mean ratio, the pen-
tagram star worn by the Pythagoreans, the continued frac-
tions, the aesthetic proportions of the Parthenon at Athens
[12], and now, here, in population dynamics.

When the number of ages is £ £3) andm;=m,=m;
=1 then Aj(t)=A5(t—1)+A3(t—2)+A5(t—3), with
A3z(1)=A3(2)=1 and A;(3)=2 (this sequence generates
the so called tribonacci numbergor an arbitrary number of
ages and fecundity we have

L
A,_(t)=k21 m, A (t—k), for t=(L+1). 8)

The firstL numbers(necessary to initialize the sequence
above are evaluated through the identificatioA (t)
=A,(t), fort=1,... L. The number#\,(t) are determined,
on the other hand, by usinf,(1)=1 andA,(2)=m, in the
expression above. Recurrence formulas like By aregen-
eralized formsof the Fibonacci sequence. These results, to-
gether with Eq.(6), allow us to write down the number of
individuals at timet with agei=1 and survival probabilityl
(we renamed);—J),

No A(t+1—i) F(J,1)
0 otherwise.

if t=i

Ni(J,t)= (€)
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The number of babieNy(J,t) may be determined using Egs. 25 ' ' ' ' '
(3) and(9). The mean survival probability at any tinhend t=100 >
at arbitrary age can be calculated as

ol matrix dimension=400

<i--- t=200
a=0.04

1 1
fOJ N;(J,t) dJ fOJ F(J,t) dJ
()= = . (10 e 1
f N;(J,t) dJ f F(J,t) dJ

0 0

sx FB

which is independenbf i, that is, the modetloes not show
senescencdt is important to note that, although aging is
absent in our mode(in the sense that the mean survival os} - =800 .
probability does not depend on the agean individual can
show senile decaythat is, its survival probabilityd dimin-
ishes with tim¢. This individual handicap is compensated by o555 o4 o505 o7 o8 o5
the natural selection of the fittest so, at a collective level, nc J
senescence is observable. We also call attention to the fact
that, in our model, the total number of individuals with age
diminishes withi. If we integrateN;(J,t) overJ [Eq. (9)],
the ratio between two successives agasdi + 1 is given by
A (t+1—i)/A (t+i) of the Fibonacci sequence. This ratio
depends on ageonly for small timet. Moreover, the loga-  (10), dropping the now unnecessary lower indgzs a func-
rithm of this ratio corresponds to the so-called mortality rate+jony of time. Table | shows our results for=10. For fixed
For humans, the Gompertz |a3] suggests that mortality matrix dimension, the time convergence is very fast.
increases exponentially with age. In our model it is constant.
At a fixed agei and survival probabilityd, the population
increases with time at a rate given by(J,t)/N;(J,t—1)
=[At+1-D)/A(t—=0)][F(I,t)/F(I,t—1)]. The first ra-
tio of the right side can be easily calculated by the general- To check out all these features, we also made some simu-
ized Fibonacci sequences, but the second requires a numelations of the model. Starting with a uniform distribution of
cal analysis. the babies, we submit all of them to mutations as described
in Eq. (1). For each baby, a random numleeis generated in
IV. NUMERICAL ANALYSIS the computer and its new survival probabililly is calcu-
lated. Then, playing the role of natural selection, a random
The continous variabld can be divided intdQ intervals  numberr is generated and compared with. If r<J’ then
such thatl=j/Q f(_)r j=1,...Q and infinitesimal increment the baby becomes an individual of age 1 and produces
dJ=1/Q. For Q big enough we expect to reobtain the con- offspring with inherited characteristi¢that is, with the same
tinous limit. In the same way, the productsfdl; ,J;_1) in  syrvival probability J'). As the process continues, care
Eqg. (7) can be seen as simple matricial products. We wrot&hould be taken in order to avoid an explosion of the com-
down aFORTRAN program with extended precision to deter- pyter's memory. To this end, we limited the number of indi-
mine F(J,t) and (J)(t) at any elapsed tim¢. For Q  viduals by a random decimation. Usually, in population dy-
=400, L=10, a=0.04, andb=0.02, Fig. 1 shows the de- namics simulations, this decimation is interpreted as a result
pendence OF(J,t) with J at different instants. After a time of food restrictioni14]. Figure Za) shows that forL =10,
t>50 we verified that a=0.04, andb=0.02, the final mean survival probability
(J)y=lim,_,..{(J)(t) approaches 0.78 in very good agreement
with our numerical results. Fa@=0.02 andb=0.02 we find

i (J)~0.96. The casea=0.08[Fig. 2(c)] leads to extinction,
wherec depends ora and b but not onJ. This means that 5¢ \vas predicted.

after enough time, the system reaches an asymptotic limit ag another important check, let us look at the Euler-Lotka
whereF (J,t)=c'F(J), i.e., there is a separation of variables

andE(J) is a stationary solution. Fixing=0.02 and vary- TABL_E_I. The mean survival pro_babilit{(\]), obtai_ned_ by using
ing a=0.02, 0.04, and 0.08, we determine numerically thaPur matnual formalism, as a function of the matrix dimensiQn
c=0.92, 0.76, and 0.48, respectively. If, for example, we?"d timet for L=10,2=0.04, ancb=0.02.

choose L=10 and m;=1 for any i then lim__[A_(t

FIG. 1. Plots of the functior-(J,t) for t=100, 200, 400, and
800 against the survival probability In order to bring them to the
same scale, they were multiplied by a factss 1014, 107°, 10,
and 165, respectively.

V. MONTE CARLO SIMULATION AND EXACT
SOLUTION

F(Jt+1)=c F(J,1), (11)

+1)/A (1)]=1.9990..., and a Malthusian exponential At >0 100 200 400 800

growth of the populatior™ with r=0.61, 0.42, and-0.04, 50 0.539056 0.508864 0.503227 0.501411 0.500663
respectively, is obtained. The last value shows that the sys100 0.692779 0.607288 0.577722 0.575042 0.575013
tem exhibits mutational meltdowi®] (extinction). 200 0.751139 0.736371 0.734567 0.734534 0.734534

The discretized form of the variablecan also be used in 400 0.771775 0.765403 0.765341 0.765341 0.765341
order to calculate the mean survival probabikty(t)) [Eqg.
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FIG. 2. (a) Time evolution of the simulated values @3)(t) for L=10, a=0.04, andb=0.02. The 11 age curves coincide and are

indistinguishable(b) the corresponding population plotted against the time. The stationary behavior is an artifact of the decimation process;

(c) the same fol. =10, a=0.08, ando=0.02; (d) the corresponding

Eq. [3] which, for our model, reads

L
; m; ((J) e "), (12

with r being the Malthusian growth exponent.

Substituting the simulated value§l)=0.78 and (J)
=0.96 into the Euler-Lotka equation, we obtain the Malthu-
sian growth exponents=0.44 andr=0.65, respectively,
which are in fairly good agreement with those of our numer
cal prediction.

Incidentally, Eqs(11) and(7) can be consistently used to

guide us to an analytical solution of the station&{J) .
One can write the integral equation

J— 1 J—
c F(J')zfof(J',J) F(J) dJ. (13)

population comes to extinction.

of zero determinant allows us to obtain the constarfor
example, ifa=0.04 andb=0.02 we findc=0.75, in good
accordance with the numerical results. The Fourier coeffi-
cients have complicated expressions so we will not give
them.

VI. DISCUSSION

Let us discuss the relevance of our model by comparing it
with other evolutionary models. The Penna model is cer-
tainly the most intensively investigatgtls]. It exhibits aging
and sometimes catastrophic senescence. Contrary to what
happens in our case, in the Penna model only babies are
affected by mutations. Moreover, mutation plays the role of a
programmed death—individuals which have accumulated a
number of mutationgi.e., number of 1's in the bit string
larger than a threshold@ die. This fate can be anticipated
only if the individual dies by food restriction&erhulst fac-
tor, which acts irrespective of individual fitngsdn our

Integrating the right side and expanding the result in amodel there is not such a threshold and individuals may live

Fourier series, Eq13) turns out to be a set of linear equa-
tions for the Fourier coefficients. In order to have nontrivial

longer. Besides that, natural selection here operates in a very
hard (and explici}y way to eliminate those individuals who

solutions, this set must have null determinant. The conditiorhave suffered bad mutations. Also exact solutions have been
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found for the Penna modgll6]. The evolution equations Dasguptal19] model. It was generalized by Heumann and
directly involve the Verhulst factor. We have similar equa- Hotzel [20] to support many age intervals. In this model,
tions [Egs. (3) and (4)], but with the survival probabilityl each individual carries, like its genome, a whole seinde-
instead. Amazingly, the Leslie matrices were also found inpendent survival probabilities{Jg, ..., J.} where J; (i
the Penna model but in a different context. There, the ele=0,... L) is the actual survival probability at age. Del-
ments of these matrices are connected to the mutation ratgerious mutations can now affect any of them but only those
while in our model they are associated to the birth rate.  coincident with the actual agewill pass through natural

As we said in the beginning, there are two kinds of evo-selection. This means that most of the damage will only
lutionary theories: optimal and mutational. Our model be-manifest later on. This accumulation of harmful mutations
longs to the latter. The optimality theory is based on the facteads to senescence. Our model differs from Heumann and
that some genes have antagonistic effects, that is, they can bitzel only in the point that our individuals carry just one
very beneficial early in life but deleterious late in life. For survival probability—that of its actual age. This is sufficient
example, genes enhancing early survival by promoting ao radically change the results.
bone hardening might reduce later survival by promoting In summary, although containing all the relevant features
arterial hardening. These ideas were completely embodiedf evolutionary systems like age structure, advantageous or
by the Partridge-Barton mod¢l]. Further studies on this deleterious mutations, reproduction with inherited character-
model have incorporated somatic as well as hereditary muistics, and natural selection, our model does not show senes-
tations[17,18, leaving the model with two mechanisms of cence. In this way, it is a good candidate to appropriately
senescence: antagonistic pleiotropy and accumulation of badkscribe some coelenterate and prokaryote groups, since all
mutations. But agingddue to mutationsemerges in these of them appear to lack senescence. On the other hand, the
works as a result of turning more intense with dgesome  analytical solution that we find and the techniques involved
artificial or arbitrary way the mutational strength. Their pro- encourage us to look forward to new and more sophisticated
cedures would be equivalent to assuming, in our model, thahodels.
the e [the mutational control parameter of EG)] is a func-
tion of the agei. Clearly, this would also trigger an aging ACKNOWLEDGMENTS
process in our model.

More interesting, however, is a different version of the We acknowledge CNP¢Conselho Nacional de Desen-
Partridge-Barton model which is called the Vollmar- volvimento Cientiico e Tecnolgico) for financial support.
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