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Exact solution of an evolutionary model without aging

Roberto N. Onody* and Nazareno G. F. de Medeiros†
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~Received 27 April 1999!

We introduce an age-structured asexual population model containing all the relevant features of evolutionary
aging theories. Beneficial as well as deleterious mutations, heredity, and arbitrary fecundity are present and
managed by natural selection. An exact solution without aging is found. We show that fertility is associated
with generalized forms of the Fibonacci sequence, while mutations and natural selection are merged into an
integral equation which is solved by Fourier series. Average survival probabilities and Malthusian growth
exponents are calculated and indicate that the system may exhibit mutational meltdown. The relevance of the
model in the context of fissile reproduction groups like many protozoa and coelenterates is discussed.
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I. INTRODUCTION

For all live organisms death is inexorable. If life is n
abbreviated by disease, predation, or accidents then dea
preceded by senescence@1,2#. Senescence seems to be
lated to reproductive strategies and it starts after an in
vidual reaches the fertile age. It can be a slow process
species which reproduce many times~iteroparous! or an
abrupt process for species reproducing only on
~semelparous!—the catastrophic senescence of the Pac
salmon being a good example of the latter.

There are three kinds of aging theories: biochemical, e
lutionary @3,4#, and telomeric@5#. The biochemical invokes
damage on DNA, cells, tissues, and organs. Defective
teins are synthesized, altering the normal course of meta
lism. The presence of free radicals, i.e., of unpaired hig
reactive electrons, can cause death of the cells or may e
lead to cancer. As a consequence, such theories are t
firmly connected to modern gerontology. Biochemical the
ries predict that species with higher metabolism would h
shorter lifetime. A criticism against this result arises wh
the lifetimes of birds and mammals~of the same size and
under optimal conditions in captivity! are compared. Usu
ally, birds live longer. Even closely related organisms li
bats and rodents with comparable sizes have very diffe
lifetimes. Such differences should be explained by the e
lutionary theories of aging. In the telomere hypothesis
senescence, replication of normal cells is accompanied
telomeric shortening. This acts as a mitotic clock resulting
a permanent exit of the cell cycle.

Evolutionary theories of aging are hypothetico-deduct
in character, not inductive. They fall into two classes: t
optimality theory and the mutational theory. In the optimal
theory @6,7#, fitness is maximized by increasing the surviv
and reproduction rate early in life at the expense of late,
it sees senescence as a necessary cost of processes ben
to youth. On the other hand, the mutational theory@8# ex-
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plains senescence as a result of late-acting deleterious m
tions, i.e., that a greater mutation load on the last part of
life is less strongly selected.

In this paper, we obtain both analytical and numeric
solutions for a simple age-structured population model.
this model, reproduction is asexual and the individuals
submitted to helpful or deleterious hereditary mutations. T
number of offspring is fixed but arbitrary otherwise and t
population dynamics is managed by natural selection. Am
ingly, this system does not exhibit senescence even w
deleterious mutations are predominant. From a mathema
point of view, the solution we found factorizes into a fertilit
and a mutational sector. It is shown that the fertility secto
completely described by generalized forms of Fibonacci
quences. On the other hand, the mutational sector, solve
Fourier series, incorporates the combined effects of muta
and natural selection. If harmful mutation is intense then
mutational meltdown@9# process can take place. All thes
results were corroborated by Monte Carlo simulations. Fr
a biological point of view, our results make the model a go
candidate to describe groups in which all reproduction
curs by fission, such as protozoa and a miscellany of
elenterates, since all of them appear to lack aging@3#.

II. MODEL

Consider a population distributed byL11 ages i ( i
50,1, . . . ,L) with respective birth ratesmi . We call babies
the individuals at age 0. They do not reproduce, i.e.,m0
50. Individuals with agei 5L die after reproduction. Let
Ni(J,t) be the number of individuals at agei with survival
probability J betweenJ and J1dJ at time t ~of course,J
P@0,1#). We choose, as initial condition, a uniform distribu
tion of babies, i.e.,Ni(J,0)5N0 d i ,0 with N0 being a con-
stant. Let us point out that senescence here means tha
average survival probability drops with agei. At time t, each
individual is submitted to mutation, which changes its s
vival probability fromJ to J8 in the following way:

J85J ee, ~1!
3234 © 1999 The American Physical Society
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PRE 60 3235EXACT SOLUTION OF AN EVOLUTIONARY MODEL . . .
wheree is a random number chosen in the interval@2a,b#
(a.0 andb.0), generated by the uniform probability de
sity distributionq(e)5@H(e1a)2H(e2b)#/(a1b) @H(x)
stands for the Heaviside function#. If a.b then deleterious
mutations are dominant. The transition probabilityP(J8,J)
that an individual has its survival probability changed fromJ
to J8 is given by the integral P(J8,J)5*2`

1`d(J8
2Jee)q(e)de. Observing that a helpful mutation is allowe
as long as it does not increase the survival probability
yond unity, we get

J8~a1b!P~J8,J!5$@H~J82Je2a!2H~J82Jeb!#

3@H~J!2H~J2e2b!#1@H~J82Je2a!

2H~J821!#@H~J2e2b!2H~J21!#%.

~2!

After mutation, the entire population passes through na
ral selection. The survivors then reproduce, generating
bies with inherited characteristics, i.e.,

N0~J,t !5(
i 51

L

mi Ni~J,t ! for t>1. ~3!

At time stept11 individuals get older or die. Taking into
account mutations and natural selection~in this order!, their
number is given by

Ni 11~J8,t11!5E
0

1

J8 P~J8,J! Ni~J,t ! dJ

for i 50, . . . ,L21. ~4!

Clearly, Ni(J,t, i )50 for iÞ0. For t>1, Eqs.~3! and
~4! can be rewritten in the matricial form

NW ~J8,t11!5ME
0

1

f ~J8,J! NW ~J,t ! dJ, ~5!

where f (J8,J)5J8 P(J8,J) and NW (J,t) and M are the fol-
lowing vector and matrix:

NW ~J,t !5S N1~J,t !

N2~J,t !

N3~J,t !

A

NL~J,t !

D ,

M5S m1 m2 m3 . . . mL21 mL

1 0 0 . . . 0 0

0 1 0 . . . 0 0

A A A A A

0 0 0 . . . 1 0

D .

Matrix M is a special form of the Leslie matrices@10#.
Iterating Eq.~5! we obtain at timet>1
-

-
a-

S N1~Jt ,t !

N2~Jt ,t !

N3~Jt ,t !

A

NL~Jt ,t !

D 5N0 F~Jt ,t ! M (t21)S 1

0

0

A

0

D , ~6!

where

F~Jt ,t !5E
0

1

•••E
0

1

)
j 51

t

f ~Jj ,Jj 21! dJj 21 ~7!

andM0 is theL3L identity matrix.

III. GENERALIZED FIBONACCI SEQUENCES

Equation~6! shows that the dynamics factorizes into tw
sectors: the fertility, exclusively contained in the matrixM,
and the mutational, including both mutations and natural
lection processes and represented by the functionF. Clearly,
at timet, we need only to know the first column elements
the (t21)th power of the fertility matrix. As we shall see
these elements form a Fibonacci sequence. Let us callAL(t
112 i ) the element of thei th line and first column. It is a
simple exercise to verify that ifL52 andm15m251 then
A2(t) can be calculated, at any timet, through the relation
A2(t)5A2(t21)1A2(t22), with A2(1)5A2(2)51, which
is exactly the Fibonacci sequence. The ratio of two succ
sive numbers, limt→`AL(t11)/AL(t)51.618 . . . , gives the
golden section or the divine proportion, as it was called
Kepler. It is astonishing to find this ubiquitous sequence
such disparate things as the cluster-cluster aggregates@11#,
the division of a line into extreme and mean ratio, the pe
tagram star worn by the Pythagoreans, the continued f
tions, the aesthetic proportions of the Parthenon at Ath
@12#, and now, here, in population dynamics.

When the number of ages is 4 (L53) andm15m25m3
51 then A3(t)5A3(t21)1A3(t22)1A3(t23), with
A3(1)5A3(2)51 and A3(3)52 ~this sequence generate
the so called tribonacci numbers!. For an arbitrary number o
ages and fecundity we have

AL~ t !5 (
k51

L

mk AL~ t2k!, for t>~L11!. ~8!

The first L numbers~necessary to initialize the sequen
above! are evaluated through the identificationAL(t)
[A2(t), for t51, . . . ,L. The numbersA2(t) are determined,
on the other hand, by usingA2(1)51 andA2(2)5m1 in the
expression above. Recurrence formulas like Eq.~8! aregen-
eralized formsof the Fibonacci sequence. These results,
gether with Eq.~6!, allow us to write down the number o
individuals at timet with agei>1 and survival probabilityJ
~we renamedJt→J),

Ni~J,t !5H N0 AL~ t112 i ! F~J,t ! if t> i

0 otherwise.
~9!
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The number of babiesN0(J,t) may be determined using Eq
~3! and ~9!. The mean survival probability at any timet and
at arbitrary agei can be calculated as

^J& i~ t !5

E
0

1

J Ni~J,t ! dJ

E
0

1

Ni~J,t ! dJ

5

E
0

1

J F~J,t ! dJ

E
0

1

F~J,t ! dJ

, ~10!

which is independentof i, that is, the modeldoes not show
senescence. It is important to note that, although aging
absent in our model~in the sense that the mean surviv
probability does not depend on the agei ), an individual can
show senile decay~that is, its survival probabilityJ dimin-
ishes with time!. This individual handicap is compensated
the natural selection of the fittest so, at a collective level,
senescence is observable. We also call attention to the
that, in our model, the total number of individuals with agi
diminishes withi. If we integrateNi(J,t) over J @Eq. ~9!#,
the ratio between two successives agesi andi 11 is given by
AL(t112 i )/AL(t1 i ) of the Fibonacci sequence. This rat
depends on agei only for small timet. Moreover, the loga-
rithm of this ratio corresponds to the so-called mortality ra
For humans, the Gompertz law@13# suggests that mortality
increases exponentially with age. In our model it is consta

At a fixed agei and survival probabilityJ, the population
increases with time at a rate given byNi(J,t)/Ni(J,t21)
5@AL(t112 i )/AL(t2 i )#@F(J,t)/F(J,t21)#. The first ra-
tio of the right side can be easily calculated by the gene
ized Fibonacci sequences, but the second requires a num
cal analysis.

IV. NUMERICAL ANALYSIS

The continous variableJ can be divided intoQ intervals
such thatJ[ j /Q for j 51, . . . ,Q and infinitesimal incremen
dJ[1/Q. For Q big enough we expect to reobtain the co
tinous limit. In the same way, the products off (Jj ,Jj 21) in
Eq. ~7! can be seen as simple matricial products. We wr
down aFORTRAN program with extended precision to dete
mine F(J,t) and ^J& i(t) at any elapsed timet. For Q
5400, L510, a50.04, andb50.02, Fig. 1 shows the de
pendence ofF(J,t) with J at different instants. After a time
t.50 we verified that

F~J,t11!5c F~J,t !, ~11!

wherec depends ona and b but not onJ. This means that
after enough time, the system reaches an asymptotic l

whereF(J,t)[ctF̄(J), i.e., there is a separation of variabl

and F̄(J) is a stationary solution. Fixingb50.02 and vary-
ing a50.02, 0.04, and 0.08, we determine numerically t
c50.92, 0.76, and 0.48, respectively. If, for example,
choose L510 and mi51 for any i then limt→`@AL(t
11)/AL(t)#51.9990. . . , and a Malthusian exponentia
growth of the populationert with r 50.61, 0.42, and20.04,
respectively, is obtained. The last value shows that the
tem exhibits mutational meltdown@9# ~extinction!.

The discretized form of the variableJ can also be used in
order to calculate the mean survival probability^J(t)& @Eq.
o
ct

.

t.

l-
eri-

e

it

t

s-

~10!, dropping the now unnecessary lower indexi ] as a func-
tion of time. Table I shows our results forL510. For fixed
matrix dimension, the time convergence is very fast.

V. MONTE CARLO SIMULATION AND EXACT
SOLUTION

To check out all these features, we also made some si
lations of the model. Starting with a uniform distribution o
the babies, we submit all of them to mutations as descri
in Eq. ~1!. For each baby, a random numbere is generated in
the computer and its new survival probabilityJ8 is calcu-
lated. Then, playing the role of natural selection, a rand
numberr is generated and compared withJ8. If r ,J8 then
the baby becomes an individual of age 1 and producesm1
offspring with inherited characteristics~that is, with the same
survival probability J8). As the process continues, ca
should be taken in order to avoid an explosion of the co
puter’s memory. To this end, we limited the number of ind
viduals by a random decimation. Usually, in population d
namics simulations, this decimation is interpreted as a re
of food restrictions@14#. Figure 2~a! shows that forL510,
a50.04, andb50.02, the final mean survival probabilit
^J&5 limt→`^J&(t) approaches 0.78 in very good agreeme
with our numerical results. Fora50.02 andb50.02 we find
^J&;0.96. The casea50.08 @Fig. 2~c!# leads to extinction,
as was predicted.

As another important check, let us look at the Euler-Lot

FIG. 1. Plots of the functionF(J,t) for t5100, 200, 400, and
800 against the survival probabilityJ. In order to bring them to the
same scale, they were multiplied by a factors51011, 1023, 1047,
and 1095, respectively.

TABLE I. The mean survival probabilitŷJ&, obtained by using
our matricial formalism, as a function of the matrix dimensionQ
and timet for L510, a50.04, andb50.02.

Q\t 50 100 200 400 800

50 0.539 056 0.508 864 0.503 227 0.501 411 0.500 6
100 0.692 779 0.607 288 0.577 722 0.575 042 0.575 0
200 0.751 139 0.736 371 0.734 567 0.734 534 0.734 5
400 0.771 775 0.765 403 0.765 341 0.765 341 0.765 3
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FIG. 2. ~a! Time evolution of the simulated values of^J&(t) for L510, a50.04, andb50.02. The 11 age curves coincide and a
indistinguishable;~b! the corresponding population plotted against the time. The stationary behavior is an artifact of the decimation
~c! the same forL510, a50.08, andb50.02; ~d! the corresponding population comes to extinction.
u

ri

o

a-
ia
tio

ffi-
ive

g it
er-

what
are
f a
d a

d

live
very
o
een
Eq. @3# which, for our model, reads

(
i 51

L

mi ~^J& e 2r ! i , ~12!

with r being the Malthusian growth exponent.
Substituting the simulated valueŝJ&50.78 and ^J&

50.96 into the Euler-Lotka equation, we obtain the Malth
sian growth exponentsr 50.44 andr 50.65, respectively,
which are in fairly good agreement with those of our nume
cal prediction.

Incidentally, Eqs.~11! and~7! can be consistently used t

guide us to an analytical solution of the stationaryF̄(J) .
One can write the integral equation

c F̄~J8!5E
0

1

f ~J8,J! F̄~J! dJ. ~13!

Integrating the right side and expanding the result in
Fourier series, Eq.~13! turns out to be a set of linear equ
tions for the Fourier coefficients. In order to have nontriv
solutions, this set must have null determinant. The condi
-

-

a

l
n

of zero determinant allows us to obtain the constantc. For
example, ifa50.04 andb50.02 we findc50.75, in good
accordance with the numerical results. The Fourier coe
cients have complicated expressions so we will not g
them.

VI. DISCUSSION

Let us discuss the relevance of our model by comparin
with other evolutionary models. The Penna model is c
tainly the most intensively investigated@15#. It exhibits aging
and sometimes catastrophic senescence. Contrary to
happens in our case, in the Penna model only babies
affected by mutations. Moreover, mutation plays the role o
programmed death—individuals which have accumulate
number of mutations~i.e., number of 1’s in the bit string!
larger than a thresholdT die. This fate can be anticipate
only if the individual dies by food restrictions~Verhulst fac-
tor, which acts irrespective of individual fitness!. In our
model there is not such a threshold and individuals may
longer. Besides that, natural selection here operates in a
hard ~and explicit! way to eliminate those individuals wh
have suffered bad mutations. Also exact solutions have b
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found for the Penna model@16#. The evolution equations
directly involve the Verhulst factor. We have similar equ
tions @Eqs. ~3! and ~4!#, but with the survival probabilityJ
instead. Amazingly, the Leslie matrices were also found
the Penna model but in a different context. There, the
ments of these matrices are connected to the mutation
while in our model they are associated to the birth rate.

As we said in the beginning, there are two kinds of ev
lutionary theories: optimal and mutational. Our model b
longs to the latter. The optimality theory is based on the f
that some genes have antagonistic effects, that is, they ca
very beneficial early in life but deleterious late in life. F
example, genes enhancing early survival by promotin
bone hardening might reduce later survival by promot
arterial hardening. These ideas were completely embo
by the Partridge-Barton model@7#. Further studies on this
model have incorporated somatic as well as hereditary
tations @17,18#, leaving the model with two mechanisms
senescence: antagonistic pleiotropy and accumulation of
mutations. But aging~due to mutations! emerges in these
works as a result of turning more intense with age~in some
artificial or arbitrary way! the mutational strength. Their pro
cedures would be equivalent to assuming, in our model,
thee @the mutational control parameter of Eq.~1!# is a func-
tion of the agei. Clearly, this would also trigger an agin
process in our model.

More interesting, however, is a different version of t
Partridge-Barton model which is called the Vollma
s
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-
t
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a
g
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at

Dasgupta@19# model. It was generalized by Heumann a
Hötzel @20# to support many age intervals. In this mode
each individual carries, like its genome, a whole set ofinde-
pendent survival probabilities $J0 , . . . ,JL% where Ji ( i
50, . . . ,L) is the actual survival probability at agei. Del-
eterious mutations can now affect any of them but only th
coincident with the actual agei will pass through natura
selection. This means that most of the damage will o
manifest later on. This accumulation of harmful mutatio
leads to senescence. Our model differs from Heumann
Hötzel only in the point that our individuals carry just on
survival probability—that of its actual age. This is sufficie
to radically change the results.

In summary, although containing all the relevant featu
of evolutionary systems like age structure, advantageou
deleterious mutations, reproduction with inherited charac
istics, and natural selection, our model does not show se
cence. In this way, it is a good candidate to appropriat
describe some coelenterate and prokaryote groups, sinc
of them appear to lack senescence. On the other hand
analytical solution that we find and the techniques involv
encourage us to look forward to new and more sophistica
models.
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